
INFLUENCE OF A LONGITUDINALLY COMPRESSED ELASTIC PLATE ON 

STREAM WAVE PERTURBATION DEVELOPMENT FOR A HOMOGENEOUS 

FLUID WITH VERTICAL VELOCITY SHIFT 

A. E. Bukatov and V. I. Mordashev UDC 532.593:539.3 

The influence of an elastic plate on the wave perturbation of a stream with constant 
velocity over the depth is studied in [1, 2] without taking account of compressive forces, 
and in [3] in the case of longitudinal tension in the absence of a stream. 

1. Let a thin elastic isotropic plate float on the surface of a stream of homogeneous 
ideal incompressible fluid with a vertical velocity shift. The stream is not perturbed at 
the initial instant and the plate--fluid surface is horozintal. Starting with the time t = 0, 
a pressure 

p = pd(x) (1 .  l )  

is applied to the plate surface. We study the process of wave motion development, as gener- 
ated under longitudinal compression conditions. 

Under the assumptions of linear theory with longitudinal compressive forces taken into 
account [i, 4-6], the problem reduces to solving the system of equations 

Ou Ou  OU t OPl 
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with the boundary 

and initial 

conditions, where 

D 1 ~ - } - t 2 1 ~ + x t F ~ + ~ = ~ ( P l - - P )  for z = O ,  

w ---- 0 for z = - -  H 

(1.3) 

~ = u = w = p , = O  for t = O  ( 1 . 4 )  
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U(z) is the unperturbed stream velocity; p, fluid density, g, free-fall acceleration, u, w, 
horizontal and vertical velocity vector components of the stream wave perturbation; p~, pres- 
sure perturbation; ~, plate deflection of the rise of the plate-fluid surface; H, tank depth; 
pl, h, E, B, density, thickness, normal elastic modulus, and Polsson ratio of the plate; Q, 
compressive force per unit width of the plate; the x axis is directed vertically upward; and 
the origin is selected on the unperturbed plate-fluld surface. Here w and ~ are interrelated 
by the kinematic condition 

w = O~/Ot + uo OUOx, uo = U(O). 

We solve problem (1.2)-(1.4) for 

U(z) = u* + a(z + H),: ( 1 . 5 )  

by using the Fourier integral transform in x and the Laplace transform in t. Consequently, 
after evaluating the Mellin integral and applying the inversion formula, we obtain 
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po i - -  P ]/2"~ -co 1-[lr/* (r) tanh r H K  (r, t)e irx dr, 

t 1 eit, lt t e ~a~t, AI,~ = Tl,~ Uor, K = - - §  
~1 A').' (71 -- 72) A1 (?I -- ~$) ~Z 

-- a ?*,s -- ~ tanh rH 4- T, 

It = I + • tanh rH,; l = I + Dtr  4 - -  Qxr2, Uo = u* -t- aH~ 

(1.6) 

f*(r) is the Fourier transform of the function f (x). 

Let us evaluate (1.6) under the condition Q: < Q* needed for the stability of an ice 
floe. Here 

a z tanh rH t ' 
Q* = ~1 (to), ~1 (r) - @llr---- ~ + 7 .  ~- Dlr  2, 

ro is the positive root of the equation T'~ (r) = 0. The quantity Q* is determined by the 
vertical velocity shift of the flow, the cylindrical stiffness and density of the plate, the 
depth and density of the fluid. A large value of Q* corresponds to a large velocity shift. 
For values of the parameters 

E = 3 A Z . i 0 9 N : / m  z, P l =  870kg/m3' 1~ = 0 , 3 4 ,  h - - - - t  m, ( 1 . 7 )  

p=103 kg/m ~, H = t 0 0 m ,  

corresponding to an ice floe [i, 7], it equals, in particular, 346.2, 346.4, 346.6 m* if a = 
0, 0.05, 0.I m -I. The compressive forces 33.93.10', 33.95.10 s, 33.97,10' N/m correspond to 
such values of Q*. In the absence of a stream and in the case of a stream with constant 
velocity over the depth Q* = 2/D~. 

Following [8], we rewrite (1.6) in the form 

= - -  ~ (I] Jr , ]1--  ~2), q =  [ r  tanh r H / . ( r ) e x p  dr, 
v ~ , , P  " A1Az 

L 

= [ r tanhrH f ,  (ilx dr, k 1,2,  ( 1 . 8 )  
~lk i (~'1 -- 72) Ah" (r) exp ] Mk) = 

M h  = (?k - -  uor)v + r sgn x ,  v = t / Ixl ,  

where the contours of integration L, Li, La coincide everywhere with the real axis, except in 
the neighborhoods of poles of the integrand which are real roots of the equations 

? l - - u o r = O ,  ? 2 - - u o r  = 0 .  

The roots of the equation Yi -- uor = 0 are bypassed by semicircles on which Re(ihl) > 0, and 
the roots of the equation Y2 -- uor = 0, by semicircles where Re(iAi) > O, where L, goes 
around only the point where yi = uor, and the path Li goes around the point where 7a = uor. 
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Under the condition Q, < Q* such a traversal around the poles assures damping of the inte- 
grals ~,a with time for any fixed x. 

Under the considered condition q, < Q* the equation y, - uer = 0 has Just one real root 
r = aa if u~ > u~, or two roots r = a~, r = ua for ua < u. < u~. If u~ < us, then the equa- 
tion mentioned has no real roots. Here 

u~ = ~ (all -}- V a:H2 -}- 4 g H ) ,  u~ = ~1 (rl)/rl,  ul > u2, 

and r~ is the positive root of the equation ry'z -- y~ = 0. 

As regards the equation Ya -- uo(r) = 0, then for qz < 2/~ by virtue of the equality 
y~(r) = - - y a ( - - r ) ,  y ~ ( - - r )  = - T a ( r )  its roots for corresponding values of uo differ from the 
roots of the equation 7~ -- uor = 0 only in sign. Under the condition 2 D~ < q~ < q*, the 
equation 7a -- uo(r) = 0 has no other roots except--~, --us despite the fact that ya(r) has a 
positive maximum in the domain r > 0. In fact 7a~ (a/2) tanh rH for 0 < r < ~. Moreover, 
uo~aH. Substitution of these estimates reduces the initial equation to the equation 2rH = 
tanh rH, which has no real roots. Therefore, 7a ~ uo(r) also for r > 0. 

2. Let us evaluate integrals (1.8) for the even function f(x) by the method of contour 
integration with the location of the stationary points (the roots of the equation M'~,a(r) = 
0) relative to the poles of the integrand taken into account by keeping in mind here that the 
conditions Re(iAz)~ 0, Re(iAa) ~0 are satisfied on the contour L that bypasses the points 
r = • in the lower and r = • in the upper half planes. We consequently obtain the ex- 

pression 

= 

~ 0 ( ~ ) ,  - - V 2 t < x ~ O ,  

~ ~ 0(~-~), O ~  x <  V~t, 

under the condition ua < u, < uz, and the expression 

for uo > u:. Here 

= 

i :, 

- -  V ~ t ~  x ~ 0, 

x ~ -- V2t 

~ = A~ sin (~zklxl), k ---- t ,2 ,  

.4. = - V ~  ~- ~ - ~  (~)/* (~) v ;  ~ ~a,h ~ k H :  v~  . . . . . . . . . .  = Uo - -  ~ i  (~,), 
r 

V ~  = 7~ (a~)  - -  u o. 

If uo < us, then ~ = 0(i//~) for x > 0 and x < 0. 
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Therefore, the undamped wave motion of the plate-fluid surface is formed by two waves 
~j ~a for ua < uo < u~, where ~a is elastic (in a fluid with a free surface and in the case 
of an absolutely flexible plate, it does not occur), while ~ is gravitational. The wave ~ 
is generated downstream (x > 0) and ~= upstream (x < 0) of the domain of application of the 
perturbation (i.i). Under the condition uo > u:, the form of the plate-fluid surface is 
shaped under the effect of Just one elastic wave ~= generated in the domain x < 0. If uo < 
ua, then the undamped wave motion is not generated either up or downstream. The leading 
fronts of the waves ~, ~ move from the domain of application of perturbations at the 
velocities V:, Va, respectively, and their lengths are determined by the formulas X~ = 2~/u~, 
A~ = 2~/~a, where 0 < A, < 2~/r:, 2~/rI < A~ < ~. 

3. Elements of the waves being generated were computed numerically for values of 
parameters (1.7) and function f(x) equal to one in ~he domain Ixl ~ I and zero for Ixl > i, 
where I = 3el0 a m for a quantitative estimation of the influence of longitudinal compression 
on the vertical velocity shift conditions of a fluid stream, 

The dependence of ul and ua on the magnitude of the compressive force and the vertical 
velocity shift is illustrated graphically in Fig. i, where the function Y~(r) is represented 

--1 
in the case a = 0 (dashed lines) and a = 0.05 m (solid lines) for QI = 0, 50~ 250, 346 m 
(curves I-4, respectively). The compressive forces 0, 4.9.10 s, 2.45.106, 3.39-106 N/m cor- 
respond to such Q:. The wave numbers ul and u2 are abscissas of the intersection of Y~(r) 
and a line passing through the origin and having the slope uo. The slope of a line passing 
through the origin and tangent to Y~(r) from above characterizes u:, and tangent from below 
u2. It is seen that exactly as the growth of the vertical flow velocity gradient, an increase 
in the compressive force extends the range of values of the velocity uo, when the undamped 
waves are generated both up and downstream. Especially significant is the influence of the 

--I 
longitudinal compression. In particular, for a = 0.05 m the range of (u: -- uz) mentioned 
is 18.9 and 33 m/sac for the compressive forces 0 and 3.39.106 N/m. If Q = 3.39,10 e N/m, and 
the stream velocity does not vary with depth, then u: -- ua = 30.8 m/sac, where the change in 
the difference u: -- Ua with the change in Q~ is due mainly to the influence of longitudinal 
compression on the quantity ua which decreases both with the growth of Q~ and with the diminu- 
tion of ~. For u = 0.05 m -~ the uz equal to 15 and 0.9 m/sac correspond to the values Q: = 0 
and 346 m ~, while uz = 0.54 m/sac corresponds to the case Q, = 346 m ~ ~ = 0. The quantity 
u~ is practically independent of Q~. It changes sliw even because of the vertical veloc- 
ity shift. Indeed the change in G from 0 to 0.05 m- results in an increase in u~ by just 
8.3% (from 31.3 to 33.9 m/sac). 

The influence of the compressive force and the vertical flow velocity shift on the dis- 
persion dependence r(u~) is illustrated in Fig. 2a, where the notation is the same as in Fig. 
i. It follows from the data in Figs. 1 and 2 that the length A: of the gravitational waves 
~: occurring only upstream does not exceed the length X~ of the elastic waves ~ generated 
downstream~ where max ~ = min ~. For fixed u~ and Q~ taking account of the vertical veloc- 
ity shift diminishes u~. However, the influence of elastic waves on the wave number ua is 
slight, and the existing difference in the values of ~ for G = 0 and u > 0 vanishes as u~ 
grows. The quantity u~ grows as the vertical flow velocity shift increases. A larger deflec- 
tion u~ corresponds to large u, for the case u = 0 in contrast to u > 0. Especially signifi- 
cant are these differences for u~ close to u~. 

If u is fixed, then a greater u~ corresponds to large Q~. The quan=i=y u: decreases as 
Q~ grows. However, the influence of Q~ on u: diminishes as u~ increases~ and is practically 
nonexistent for u~ close to u~. 

The dependence r(Q~) characterizing the dlstribu=ion of u~ and ua relative to the magni- 
tude of the compressive force is shown in Fig. 2b for Q~ < Q*. The solid and dashed llnes 
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correspond to the same vertical velocity gradients as in Fig. 2a, and curves 1-3 correspond 
to uo = i0, 15, 21 m/sec. It follows from Fig. 2b that a greater compressive force Q = Qa 
corresponds to a smaller ue, and pressure (1.1) under longltudinal compression conditions 
generates waves which do not damp out with distance starting with this Q Indeed, for a = ml e 

0.05 m the undamped waves are generated for q greater than 210 and i0 m a if uo = i0 and 15 
m/sec, respectively. In case uo = 21 m/sec and u = 0.05 m -z, the undamped waves are generated 
both in the absence of compressive forces, and under longitudinal compression (QI > 0) or 
tension (QI < 0) conditions. An increase in the flow vertical velocity gradient shifts the 
quantity Qa towards lower values. For instance, if waves are generated for uo = 15 m/sec only 
for Q > 9.8.104 N/m in the case a = 0.05 m -I, then in the absence of a stream or a stream with 
a constant velocity u, = 15 m/sec over the depth they also occur for q = 0 (no compressive 
forces) and under longitudinal compression (0 < QI < Q~) or tension conditions with the force 
0 < Q < 1.96-10 s N/m. The magnitude of the tension force needed to generate undamped waves 
by the pressure (1.1) grows as uo increases, and decreases with the rise in the flow vertical 
velocity gradient. 

The velocity Va of the leadin E front of the elastic waves is practically independent of 
the vertical flow profile. It is determined by the elastic forces of the plate and by a 
compressive force. As regards the frontal velocity V~ of the gravitational waves, it can 
then vary even under the effect of longitudinal compression forces and of the vertical flow 
velocity shift. For uo = ua the equality VI = Va = 0 is satisfied. The velocity V~ vanishes 
for uo = ul. The frontal velocity V~ has a maximum in the range Ua < u < u~ and Va > Vz. 
The velocity Va of the elastic wave orlginatin E for uo > Ua grows without limit as uo increases, 
This is shown in Fi E . 3, where sections of the curves in the lower half plane, in absolute 
value, characterize Va and in the upper half plane V~. Values of Ua are noted by points on 
the ue axis, and values of ul by triangles, while the remaining notation is the same as in 
Fi E. i. 

The distribution of the amplitudes A, of the gravitational (solid lines) and Aa of the 
elastic (dashed lines) waves with respect to uo and r is shown in Fi E . 4 to the accuracy of 
the factor 2~pe for a 0.05 m -~ m a = , ql = 346 . Comparing A~ and Aa yields a graphic repre- 
sentation of the elastic wave contribution to the wave motion. It is also seen that A~ and 
Aa are oscillating functions of uo and r, where the velocity uo = Ua (a point on the uo axis) 
is resonant for AI and Aa. As ue tends to u: the amplitude AI grows without limit. The 
value r = r~ (the square on the r axis), to which the wave numbers u: and Ua tend in Fig. 4b, 
corresponds to the resonant velocity ue = Ua in Fi E . 4a. If uo * u,, then u: + 0. Let us 
note that changes in rl due to the vertical velocity shift do not exceed 3~ while an increase 
in the compressive force results in its substantial growth. In particular, for a = 0.05 m -~ 

--I 
the r1-10 a equal to 5.9, 6.1, 7.1, 7.5 m correspond to the compressive forces 0, 4.9-10 -s, 
2.45,106, 3.39.106 N/m. Let us recall that here Ua = iS, 14.2, 8.5, 0.9 m/sec, i.e., the 
change in Q~ is more substantial on Ua than on rl. If G = O, then ua = 14.8, 13.8, 8.2, 
0.54 m/sec .  
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The contribution of the gravitational and elastic waves to the wave motion is charac- 
terized in Fig. 5, where B~,a(uo) and B~,2(r) are functions governing the greatest possible 
values of the amplitudes A,,~(uo) and A1,~(r). The Ba are superposed by solid, and the B~ 
by dashed lines in the graphs for a = 0.05 m-* and by dash--dot lines for a = 0. The corre- 
sponding values of u~, r~, ua for a stream without a velocity shift (a = 0) are marked by 
triangles, squares, and points. Curves l, 4 correspond to the compressive forces 0 and 
3.39.10' N/m. 

A numerical analysis of the dependence of B:,a on a showed that it does not appear in 
practice for elastic waves. The exception is the neighborhood of the resonance values, which 
vary, albeit negligibly, as a changes. The influence of the vertical velocity shift on the 
quantity B: (gravitational waves) is noticeable. It shows up in the diminution of B~ and 
grows as uo does (diminution of r). This is seen from a comparison of the dashed and dash- 
dot curve 4 in Fig. 5. 

The distribution of B~,a with respect to QL is shown in Fig. 6 for a stream with con- 
stant velocity over tbe depth (dashed lines) and a stream wlth vertical gradients a = 0.05 
m -I (solid lines). Curves i-3 correspond to the same uo as in Fig. 2b. It is seen that the 
possibility of the existence of resonance values of the compressive (or tensile) force is 
determined by the value of uo and the vertical flow velocity shift. As the compressive 
force increases (starting with resonance) values of B~,a decrease to the critical value re- 
sulting in plate buckling. In the case of longitudinal tension, the large amplitude of the 
elastic and gravitational waves which do not damp with distance corresponds to a large force 
(before resonance). 
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